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Markov process built in scale-similar multifractal energy cascades in turbulence
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The scale-similar multifractal cascade, which is believed to describe the process of energy cascade in the
inertial scale-range of isotropic turbulence, is proved to be Markovian so as to be governed by the Chapman-
Kolmogorov equation, when negative logarithmic length scale is taken for time. For a limited class of cascades,
the Kramers-Moyal expansion of the Chapman-Kolmogorov equation is possible and the coefficients are
exactly derived from the functional form of intermittency exponentsm(q), and they are all constant if the
cascade is scale similar.
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As is well known, many models have been proposed
explain the intermittency of velocity fluctuation in isotrop
turbulence since the well-famed refined similarity hypothe
of Kolmogorov @1#. Most of them have the scale similarit
that was clearly defined in Monin and Yaglom’s book@2#;
when « r is energy dissipation averaged over a domain
scale r, the probability distribution ofer ,l[« r /« l depends
only on the ratior / l , and moreoverl .r.r are three lengths
in the inertial subrange, then the variableser ,r and er,l are
statistically independent. Here the domain of a larger sca
supposed to include that of a smaller scale. A necessary
sult from this is the existence of intermittency expone
m(q) such that

^er ,l
q &5~r / l !2m~q!, ~1!

where the angular bracket means the ensemble ave
Typical examples of scale-similar intermittency models w
discussed in@3,4#, all of which are accompanied with the
own, multifractal dissipation measures. The lognormal mo
of Kolmogorov@1# is also scale similar, as was described
@2#.

Statistical independence of eventer ,l seems to imply
some Markovian nature in respect to length scale.@Indeed,
the infinite divisibility of the probability density function
~PDF! of ln er,l , which was proved in@4# for scale-similar
measures, is likely to suggest an interrelation with this
ture.# To clarify this fact, we start from the general formu
of the PDF of lner,l[Dx.

First, there must be a characteristic function ofDx of the
form

f~u;r / l !5^exp@ iu ln er ,l #&5~r / l !a~u!. ~2!

@See@2#!, a~u! in which should be2m( iu) as is evident by
comparison with Eq.~1!#. Hence we have the PDF ofDx as

p~Dx;r / l !5E e2 iuDxf~u;r / l !du/2p

5E exp@2 iuDx1a~u!ln~r / l !#du/2p. ~3!

This form may be changed, by introducing a new parame
Dt52 ln r/l, to
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p~Dx;Dt !5E exp@2 iuDx2a~u!Dt#du/2p, ~4!

which can be interpreted as the conditional PDF of observ
x25x11Dx at the timet25t11Dt when we observedx1 at
t1 . Based on Eq.~4!, it is easy to derive the relation

p~x22x1 ;t22t1!5E p~x22x3 ;t22t3!

3p~x32x1 ;t32t1!dx3 . ~5!

This is nothing but the Chapman-Kolmogorov equation
stricted to a stationary and homogeneous case of the stoc
tic process. In this case, we can conveniently fix the orig
of x andt by introducing the integral scaleL and the average
dissipation «L so that, for example,x25 ln er,L and t25
2 ln r/L.

The corresponding Kramers-Moyal expansion is read
obtained by differentiation of Eq.~4! as follows,only if p is
analytic in x2 ,

]p/]t252E a~u!exp@2 iuDx2a~u!Dt#du/2p

52( a~n!~0!/n! E un exp@2 iuDx

2a~u!Dt#du/2p

52( a~n!~0!/@n! ~2 i !n#]n/]x2
np

5( ~21!nm~n!~0!/n! ]n/]x2
np, ~6!

keeping in mind the equality ofa~u! and 2m( iu) noted
before. Here we have used the analyticity ofa~u! which
comes from that ofm(q) @4#. Sincem(0)50 ~the condition
of space-filling measure for isotropic turbulence, see@4#!, n
in the sum of Eq.~6! starts from n51. @Note that any
nonspace-filling measure as in theb model cannot yield a
Kramers-Moyal expansion, while it can satisfy th
Chapman-Kolmogorov Eq.~5!.# Thus, the expansion coeffi
cients, sayDn , should be constant; that isDn5m (n)(0)/n!
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as is clear from Eq.~6!. This is an unveiled fact. For ever
scale-similar model which has ap(Dx;Dt) analytic in Dx,
all the coefficients can be calculated from the form of
proper m(q). Dn are generally nonvanishing forn higher
than 2. The only exception is the lognormal model, in wh
we have m(q)5mq(q21)/2 @m5m(2)# so that D15
2m/2, D25m/2, andDn50 for all the highern values, and
then we have a simple Fokker-Planck equation from Eq.~6!;
the solution of which is

p~Dx;Dt !5exp@2~Dx2D1Dt !2/~4D2Dt !#/~4pD2Dt !1/2.
~7!

This is nothing but a Brownian motion inx space with a
constant-speed drift.

Here should it be remarked thatall scale-similar models
are Markovian in the sense that they can satisfy Eq. (5)
not all of them are expansible in the form of Eq. (6). Many
good models even with space-filling measures are not ex
sible if their p(Dx;Dt) are not analytic but singular or dis
continuous functions. Thep model @5# and the three-
dimensional Cantor set model@3# are just such cases, as
known from the formulas shown in@3#. Dn5m (n)(0)/n! can
be calculated for these models, but they are meaningles
the Kramers-Moyal expansion coefficients. In other wor
the Kramers-Moyal expansion is not essential forp(Dx;Dt)
in a scale-similar model.

As an example of calculatingDn , we take up the log-
Poisson model@6# with m(q)52q/322@12(2/3)q#, assum-
ing thatp(Dx;Dt) for this case is analytic~since its analyt-
icity is not yet evident!. The Dn values can be calculated
rather easily with the aid of a computer. The result isD15
20.1443, D250.1644, D3520.0222, D452.2531023,
D5521.8331024, D651.2331025, D7527.1531027,
02730
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D853.6231028, D9521.6331029, D1056.62310211

and the like. The magnitudes of the expansion coefficie
decrease very rapidly with ordern.

This may tempt us to think that the lognormal model
almost a sufficient approximation to another model. This
right so long as we look at the main part of the PDF alo
But once we look into the high moments ofer ,L5exp@x2#
~not x2! ! to which the intermittency in real turbulence great
contributes, the approximation turns out to become poor
has been well known by the fact that the lognormal mo
cannot explain the observed scalings of energy dissipatio
well as velocity increment@7#. Therefore all the coefficients
if the Kramers-Moyal expansion is possible, should be n
negligible at all in principle, so far as scale-similarity hold
These coefficients actually characterize the Markov proc
built in a scale-similar model which has an analyt
p(Dx;Dt).

The recent work of Naert, Friedrich, and Peinke@8# pro-
poses another type of Fokker-Planck equation forp(Dx;Dt),
which has a nonconstantD1 , based on their experimenta
data. It is a remarkable fact that they directly verified
experiment that the cascading process was Markovian. F
our argument developed above, however, it is clear that t
PDF ofx must generally lack the scale similarity, because
Dn should be constant if the cascade is scale similar an
the expansion is possible. At this point their Fokker-Plan
equation is a significant challenge to the entire concep
scale similarity, if it is universal for higher Reynolds num
bers. Only in the limit when theirD1 goes to a constant~g
→0 in @8#!, their PDF of x is in accord with Eq.~7! to
recover the scale similarity exactly as the lognormal mode
the most. So, it looks important at present to study further
how universal their Markov process is.
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