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Markov process built in scale-similar multifractal energy cascades in turbulence
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The scale-similar multifractal cascade, which is believed to describe the process of energy cascade in the
inertial scale-range of isotropic turbulence, is proved to be Markovian so as to be governed by the Chapman-
Kolmogorov equation, when negative logarithmic length scale is taken for time. For a limited class of cascades,
the Kramers-Moyal expansion of the Chapman-Kolmogorov equation is possible and the coefficients are
exactly derived from the functional form of intermittency exponents|), and they are all constant if the
cascade is scale similar.
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As is well known, many models have been proposed to .
explain the intermittency of velocity fluctuation in isotropic D(AX?AI):I exd —i0Ax—a(0)At]do2m,  (4)
turbulence since the well-famed refined similarity hypothesis

of Kolmogorov[1]. Most of them have the scale similarity \hich can be interpreted as the conditional PDF of observing
that was clearly defined in Monin and Yaglom's bod;  x,=x, + Ax at the timet,=t;+ At when we observed, at

when g, is energy dissipation averaged over a domain of,  Based on Eq(4), it is easy to derive the relation

scaler, the probability distribution ofe, ;=¢,/e; depends

only on the ratia /I, and moreovel> p>r are three lengths

in the inertial subrange, then the variablgs, ande, are p(XZ_Xl;tz_tl):J P(Xa—X3;ta—t3)

statistically independent. Here the domain of a larger scale is

supposed to include that of a smaller scale. A necessary re- X P(Xz—Xq;tz—t1)dXs. 6)

sult from this is the existence of intermittency exponents

w(q) such that This is nothing but the Chapman-Kolmogorov equation re-
stricted to a stationary and homogeneous case of the stochas-

(ed)y=(r/1)y~#a), (1) tic process. In this case, we can conveniently fix the origins

of x andt by introducing the integral scaleand the average

where the angular bracket means the ensemble averaggissipatione, so that, for examplex,=In g, and t,=

Typical examples of scale-similar intermittency models were— |n /L.

discussed ir13,4], all of which are accompanied with their  The corresponding Kramers-Moyal expansion is readily

own, multifractal dissipation measures. The lognormal modepptained by differentiation of Eq4) as follows,only if p is
of Kolmogorov[1] is also scale similar, as was described inanalytic in x,,

[2].

Statistical independence of eveef, seems to imply
some Markovian nature in respect to length scHiedeed, 59/“2:—] a(0)exd —i 0AX—a(0)At]do/2m
the infinite divisibility of the probability density function
(PDP of Ing;,, which was proved irf4] for scale-similar .
measures, is likely to suggest an interrelation with this na- -2 a“”(O)/n!f 0" ex —10Ax
ture.] To clarify this fact, we start from the general formula
of the PDF of Ing, ;=Ax. —a(0)At]do/2m

First, there must be a characteristic functionAof of the
form =—> a™(0)/[n!(—i)""x3p

d(O;r)=(exdidIne, ]y=(r/1). 2
=, (—=1)"w™(0)/n! d" ox3p, (6)

[See[2]), a(6) in which should be— u(i 6) as is evident by

comparison with Eq(1)]. Hence we have the PDF dfx as keeping in mind the equality of(6) and — u(i6) noted

. before. Here we have used the analyticity @ff) which
p(Ax;r/I)zf e 1 %gp(0;r/)d o2 comes from that ofu(q) [4]. Sincew(0)=0 (the condition
of space-filling measure for isotropic turbulence, §4p, n
] in the sum of Eq.(6) starts fromn=1. [Note that any
ZJ exfl —i10Ax+a(0)In(r/1)]dol2m. (3)  nonspace-filling measure as in tiemodel cannot yield a
Kramers-Moyal expansion, while it can satisfy the
This form may be changed, by introducing a new paramete€hapman-Kolmogorov Ed5).] Thus, the expansion coeffi-
At=—Inr/l, to cients, sayD,,, should be constant; that B,=«((0)/n!

1063-651X/2002/6&)/0273012)/$20.00 65027301-1 ©2002 The American Physical Society



BRIEF REPORTS

as is clear from Eq(6). This is an unveiled fact. For every
scale-similar model which has @(Ax;At) analytic in Ax,
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Dg=3.62x10"8, Dg=-1.63x10"°, D,,=6.62x10 1!
and the like. The magnitudes of the expansion coefficients

all the coefficients can be calculated from the form of itsdecrease very rapidly with order

proper u(q). D, are generally nonvanishing far higher

This may tempt us to think that the lognormal model is

than 2. The only exception is the lognormal model, in whichalmost a sufficient approximation to another model. This is

we have u(q)=wpq(q—1)/2 [u=u(2)] so that D;=
—ul2,Dy,=ul2, andD,=0 for all the highem values, and
then we have a simple Fokker-Planck equation from(Bp.
the solution of which is

p(Ax;At)=exd — (Ax—D;At)?/(4D,At)]/(4wD,At) 2
(7
This is nothing but a Brownian motion ir space with a

constant-speed drift.
Here should it be remarked thall scale-similar models

right so long as we look at the main part of the PDF alone.
But once we look into the high moments ef | =exx,]
(notx,!) to which the intermittency in real turbulence greatly
contributes, the approximation turns out to become poor, as
has been well known by the fact that the lognormal model
cannot explain the observed scalings of energy dissipation as
well as velocity increment7]. Therefore all the coefficients,

if the Kramers-Moyal expansion is possible, should be non-
negligible at all in principle, so far as scale-similarity holds.
These coefficients actually characterize the Markov process

are Markovian in the sense that they can satisfy Eq. (5) bubuilt in a scale-similar model which has an analytic

not all of them are expansible in the form of Eq..(®)any

p(Ax;At).

good models even with space-filling measures are not expan- The recent work of Naert, Friedrich, and Peir{i83 pro-

sible if their p(Ax;At) are not analytic but singular or dis-
continuous functions. The model [5] and the three-

poses another type of Fokker-Planck equatiorpfigkx; At),
which has a nonconstam,, based on their experimental

dimensional Cantor set modg3] are just such cases, as is data. It is a remarkable fact that they directly verified by
known from the formulas shown i8]. D,,= (™ (0)/n! can experiment that the cascading process was Markovian. From
be calculated for these models, but they are meaningless asir argument developed above, however, it is clear that their
the Kramers-Moyal expansion coefficients. In other wordsPDF ofx must generally lack the scale similarity, because alll

the Kramers-Moyal expansion is not essential foa x; At)
in a scale-similar model.

As an example of calculatin®,,, we take up the log-
Poisson mod€]l6] with w(q)=2q/3—2[1—(2/3)%], assum-
ing thatp(Ax;At) for this case is analyti¢since its analyt-
icity is not yet evident The D, values can be calculated,
rather easily with the aid of a computer. The resulDis=
—0.1443, D,=0.1644, D;=—0.0222, D,=2.25X10 3,
Ds=-1.83x10 4, Dg=1.23x10° D,=-7.15x10 7,

D, should be constant if the cascade is scale similar and if
the expansion is possible. At this point their Fokker-Planck
equation is a significant challenge to the entire concept of
scale similarity, if it is universal for higher Reynolds num-
bers. Only in the limit when theiD; goes to a constarity

—0 in [8]), their PDF ofx is in accord with Eq.(7) to
recover the scale similarity exactly as the lognormal model at
the most. So, it looks important at present to study further on
how universal their Markov process is.
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